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Abstract. First-order system least squares (FOSLS) is a methodology that offers an alternative
to standard methods for solving partial differential equations. This paper studies the first-order
system least-squares approach for scalar second-order elliptic boundary value problems with discon-
tinuous coefficients. In a companion paper [2], ellipticity of an appropriately scaled least-squares
bilinear form is established in a natural norm. For some geometries this ellipticity is independent
of the size of the jumps in the coefficients. The occurrence of singularities at interface corners,
cross-points, reentrant corners, and irregular boundary points is discussed, and a basis of singular
functions with local support around singular points is established. This paper describes a method
for including discrete versions of the singular basis functions together with standard finite element
spaces in a least-squares format at little additional computational cost. The singular basis functions
are constructed to match the jump conditions that arise at interfaces between regions of continuity of
the diffusion coefficient. Because these basis functions must be approximated in practice, the result-
ing discretization is by nature nonconforming. This necessitates the establishment here of a general
error estimate for FOSLS L2 minimization problems discretized by nonconforming finite elements.
An advantage of the FOSLS formulation is that this estimate does not involve the consistency error
term usually present in bounds for other methods. Based on this general estimate error bounds
are derived for the finite element space that includes singular basis functions. Numerical tests are
included that confirm these discretization error bounds. Finally, a multilevel method is developed
for solving the discrete system that uses singular basis functions on all levels and its efficiency is
demonstrated by the numerical results.
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1. Introduction. In this paper we consider the application of first-order sys-
tem least squares (FOSLS [11, 12]) to diffusion equations in the plane with jump-
discontinuous coefficients:

−∇ · (a∇p) = f inΩ ,
p = g

D
onΓD ,

n · (a∇p) = g
N

onΓN .
(1.1)

Here, a > 0 is a piecewise smooth function corresponding to some partition of domain
Ω ⊂ <2, with boundary ∂Ω = ΓD ∪ ΓN and outward unit normal n, and the data
f, g

D
, and g

N
are appropriately smooth functions. Our focus is on a two-stage FOSLS

scheme whose primary aim is to approximate the flux a∇p.
Studies of the problem of accurate approximation of p by inclusion of special basis

functions (c.f. [30, 23]) and adaptive refinement (c.f. [28]) has been extensive, but the
development of efficient multilevel algorithms for the calculation of stress intensity
factors is lagging. The only example we are aware of is the full multigrid algorithm
for interface problems stemming from cracks introduced in [7, 9].

†Los Alamos National Laboratory, T-7, Mail Stop B284, Los Alamos, NM 87545. E-mail
berndt@lanl.gov. Sponsored by the Department of Energy, under contract W-7405-ENG-36, LA-
UR-02-3284

‡Department of Applied Mathematics, Campus Box 526, University of Colorado at Boulder,
Boulder, CO 80309-0526. E-mail {tmanteuf,stevem}@boulder.colorado.edu. Sponsored by the
National Science Foundation under grant number DMS-8704169 and Department of Energy, Applied
Math Program Grant DE-FG03-94ER25217.

1



The least squares methododology for systems of first order is by now several
decades old and had its first applications in continuum mechanics (see, for example,
[20, 32, 21, 25, 15, 22]). Only fairly recently has it produced H1 equivalent forms
to which optimal multigrid solvers have been applied (see, for example, [12]). For a
thorough review of the least-squares methodology see [4] and the references therein.

In the FOSLS formulations developed in [11, 12]), the aim was to re-write the
original scalar equation as a first-order system in such a way that its associated least-
squares functional has an H1-equivalent homogeneous part. This equivalence enables
simpler finite element discretization methods and ensures that the resulting discrete
problem can be solved efficiently by a standard multigrid method. However, because
we allow discontinuities in a here, the flux is discontinuous across interfaces and may
be singular at some points in the domain. We are therefore led to the development of
a special FOSLS L2 approach for solving (1.1).

In this paper we develop a flux-only FOSLS functional that is continuous and
coercive in a scaled space, H(div a,Ω) ∩ H(curl a,Ω), which we denote as W (see
section 2). We denote the space of piecewise H1 vector valued functions as H1

S(Ω)
(see section 4). In [2] it was shown that H1

S(Ω) ∩W has finite co-dimension in W.
The the singular basis functions, together with H1

S(Ω)W, span W. (c.f. [2]).
The basic idea behind our special FOSLS scheme is to include singular basis

functions in the finite element space and thus accurately model the singular behavior
of the flux. These basis functions are constructed so that their action in the weak form
involves integration only inside a small fringe region around the singularity. Thus,
the additional cost is minimal, yet yet optimal accuracy is retained.

Alternatives to the approach we develop here are described in detail in [2] and
include adding H1 singular basis functions in standard Galerkin methods to enhance
the rate of convergence (c.f. [30, 17, 7, 10]), the use of H(div) conforming finite
element spaces with mixed formulations (see [8] ) or with FOSLS functionals that are
based on H(div) (see [11, 26, 27]). Standard finite element spaces can be used with
FOSLS functionals that are weighted to eliminate the overall impact on accuracy of
the singular behavior of the flux ([18, 17, 24]). Unfortunately, this weighting approach
does not provide accurate resolution of the solution close to singularities of the flux,
which is the main objective of the approach developed here.

Other alternatives use FOSLS based on inverse norms ([6, 5, 13, 3]) and FOSLS∗

[14]. The FOSLS L2 approach developed here achieves accuracy in the stronger H1-
like norm, which may be preferred in many practical cases.

To estimate discretization accuracy for our special FOSLS scheme, we derive a
general error bound for L2-type FOSLS discretized by nonconforming finite elements.
Similar nonconforming estimates for other methods typically involve consistency error
terms (cf. [1]), but they are not needed in the FOSLS context. This special property
of FOSLS is important because it means that error estimates for nonconforming finite
elements may be derived solely from relatively simple interpolation error bounds.

The FOSLS reformulation of (1.1) is derived in section 2. In section 3, the cal-
culation of exponents of singular basis functions is described, and, in section 4, we
describe the finite element discretization scheme, complete with singular basis func-
tions. In section 5, the general nonconforming error bound is derived and applied
to estimating the accuracy of our augmented basis approach. These estimates are
confirmed by the numerical results at the end of section 5. We introduce a multilevel
solver in section 6 that is based on coarsening with singular basis functions on all
levels. The W -cycle form of this algorithm exhibits typical multigrid convergence
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behavior, as the numerical results of section 7 also confirm.

2. Problem statement and FOSLS formulation. Assume that Ω ⊂ <2 is a
simply connected polygonal region and that

Ω =
J⋃

j=1

Ωj , (2.1)

where Ωj are mutually disjoint open simply connected polygonal regions. Assume
also that ∂Ω = ΓD ∪ ΓN , ΓD has positive measure, and ΓD and ΓN both consist of a
finite number of connected pieces. The case in which ΓD = ∅ is a simple extension.

Consider the following div-curl first-order system for the scaled flux u :=
√
a∇p:

−∇ · (
√
au) = f inΩ,

∇× (u/
√
a) = 0 inΩ,

n · (
√
au) = 0 on ΓN ,

n× (u/
√
a) = 0 on ΓD.

(2.2)

(We treat the homogeneous boundary condition case for simplicity. The general case
of nonzero gN and gD := n×∇p could be treated by standard lifting or superposition
techniques.)

Under the additional smoothness assumptions a ∈ C1,1(Ω), f ∈ L2(Ω), and in
the absence of reentrant corners and boundary points in which ΓD and ΓN meet with
interior angle greater than π/2, we can assert the following [12]: scalar equation (1.1)
has a unique solution p ∈ H2(Ω); system (2.2) has a unique solution u ∈ H1(Ω)2; and
the two problems are equivalent in the sense that their solutions correspond according
to the relation u :=

√
a∇p.

We are interested here in the discontinuous coefficient case, where a is assumed
only to be piecewise continuous. Theoretical properties of the first-order system and
the corresponding FOSLS functional for this case are studied in the companion paper
[2]. In the present paper, we focus on the discretization and multilevel solver for the
discrete problem. Problems with reentrant corners and irregular boundary points can
be handled in an analogous manner and are omitted for simplicity of presentation.

System (2.2) gives rise to the scaled least-squares functional

G(u; f) =
∥∥(1/√a)∇ · (√au + f)

∥∥2

0
+
∥∥√a∇× (u/

√
a)
∥∥2

0
(2.3)

and the associated FOSLS L2 minimization problem

u = arg min
v∈W

G(v; f), (2.4)

which is well posed on the space

W = {v ∈ H(div a,Ω) ∩H(curl a,Ω) :

n · (
√
av) = 0 onΓN ,n× (v/

√
a) = 0 onΓD

}
, (2.5)

where

H(div a,Ω) =
{
v ∈ L2(Ω)2 : ∇ · (

√
av) ∈ L2(Ω)

}
,

H(curl a,Ω) =
{
v ∈ L2(Ω)2 : ∇× (v/

√
a) ∈ L2(Ω)

}
.
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We equip W with the semi norm

|u|W =
∥∥(1/√a)∇ · (√au)

∥∥2

0
+
∥∥√a∇× (u/

√
a)
∥∥2

0
.

Note that this is actually a norm because of the assumption that ΓD has positive
measure (see [2, Lemma 3.3]). Note also that G is trivially W elliptic in the sense
that

G(u; 0) = |u|2W . (2.6)

Minimization problem (2.4) leads to the following variational problem: find u ∈
W such that

F(u,v) =
〈
f/a,∇ · (

√
av)
〉
0,Ω

, (2.7)

for all v ∈W, with

F(u,v) =
〈
(1/a)∇ · (

√
au),∇ · (

√
av)
〉
0,Ω

+
〈
a∇× (u/

√
a),∇× (v/

√
a)
〉
0,Ω

.

Suppose that a is piecewise continuous with respect to the partitioning (2.1) of
Ω in the maximal sense, that is, a is continuous on Ωj and no open set Oj ⊃ Ωj

exists for which a|Oj
is continuous, 1 ≤ j ≤ J . Under these assumptions, variational

problem (2.7) has a unique solution in W that is also the unique solution of FOSLS
minimization problem (2.4) (see [2]).

An edge that lies in the intersection of the closure of two subdomains is called
an interface. Points where two interfaces meet are called cross-points. Cross points,
reentrant corners and irregular boundary points are all potential singular points. Now,
the solution u ∈W of problem (2.2) satisfies certain conditions across the interfaces.
Denote by nI a unit vector normal to interface I. Then

nI · (
√
au) and τI · (u/

√
a) are continuous a.e. across interfaces. (2.8)

These interface conditions must be true in order for the first two equations in (2.2)
to make sense. For the first condition in 2.8 see, for example, [33, chapter 6.2]. The
second condition can be derived analogously.

3. Approximation of singularities. In [2, Section 5], a splitting of W into a
finite-dimensional space spanned by singular functions and locally smooth functions
is introduced. This leads to a decomposition of any u ∈W as

u = u0 +
M∑

m=1

Nm∑
n=1

ωmδmsm,n, (3.1)

where u0|Ωi
∈ H1(Ωi), δm is a cut-off function at a singular point (see Figure 4.2

for an example), and sm,n, n = 1, . . . , Nm are the singular functions associated with
singular point xm, m = 1, . . . ,M . In this paper, our focus is on singular points that
are cross-points (see Figure 3.1 for an example). The other types of singular points,
described in [2, Section 5], can be treated in a analogous fashion.

The exact nature of a singularity at a cross-point can be calculated using a and
the geometry of interfaces in the neighborhood of the cross-point. To obtain a simple
representation of such singularities (see [23] and [30]), additional constraints on the
behavior of a within Ωi are necessary. We first summarize the results of [2, Section 5]
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ã1

ã2

ã3
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Fig. 3.1. Cross-point, I=5.

and then proceed to describe the numerical method that is used to calculate singular
basis functions.

Given a polar coordinate system (r, θ), centered at a cross-point, we recall that
a ∈ C1,1(Ωi), for each subdomain Ωi, and assume that a satisfies

lim
r→0

aθ = 0, and lim
r→0

rar = 0. (3.2)

The task of finding a representation for the singularity at a cross-point, reduces to
finding solutions of the Sturm-Liouville eigenvalue problem (see [2, Section 5] for a
detailed derivation)

−(ãT ′)′ = ãα2T, on [0, 2π). (3.3)

where ãi = limr→0 a(r, θ), in Ωi.
Each interface that adjoins the cross-point is characterized by the angle of its

tangent at the cross-point with the x1-axis. Denote by I the number of interfaces
adjoining at a given cross-point and by θi, i = 1 . . . I, the angles their tangents make
with the x1-axis (see Figure 3.1 for an example with I = 5). Assume that these
interface angles are ordered such that θi < θi+1, i = 1, . . . , I − 1. Let θI+1 = θ1.

Eigenfunctions of (3.3) have the form

Tn(θ) = λn,i cos(αnθ) + µn,i sin(αnθ), (3.4)

for θ ∈ (θi, θi+1), where α2
n is the associated eigenvalue. According to [2, Theorem

5.1], we must calculate all eigenvalues 0 < α2
n < 1 and associated eigenfunctions of

(3.3), to obtain all singular functions

sm,n =
√
a∇rαnTn(θ) =

√
aαnr

αn−1

(
λni sin((αn − 1)θ) + µni cos((αn − 1)θ)
λni cos((αn − 1)θ)− µni sin((αn − 1)θ)

)
,

(3.5)
for θ ∈ (θi, θi+1), where λni and µni are constant inside each Ωi. Note also that
sm,n =

√
a∇σn with

σn(r, θ) = rαn(λni sinαnθ + µni cosαnθ), for θ ∈ (θi, θi+1). (3.6)

Remark 1. In [2], a representation of the singular functions is used that differs
slightly from (3.5). It is easy to show that the two representations are equivalent.
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For convenience we will now drop the subscript n where the meaning is apparent.
The exponent α, and the coefficients (λi, µi) can be determined by enforcing continuity
of both T (θ) and ãT ′(θ) across interfaces. To obtain first approximations to the
eigenvalues α2, we discretize eigenvalue problem (3.3) and solve the resulting algebraic
generalized eigenvalue problem. Note that we are primarily interested in the smallest
values of α2, that is, 0 ≤ α2 ≤ 1. The eigenvectors associated with these small
eigenvalues are well approximated using a fairly coarse discretization. Values of α
that are obtained in this way are used as starting values of a secant iteration that is
based on the following idea.

Interface conditions (2.8) give rise to a 2I × 2I nonlinear system of equations for
α, λi, and µi, i = 1, . . . , I, which can be written in the compact form

M(α)(λ1, µ1, . . . , λI , µI)t = 0. (3.7)

A nontrivial solution exists only when M(α) is singular, that is, when detM(α) = 0.
To find roots of detM(α), we use a secant iteration with starting values obtained
from the solution of the discretized Sturm-Liouville eigenvalue discussed in above.

Suppose we compute an approximation α̃ = α+ η. To estimate η, we find x that
has norm one and minimizes ‖M(α̃)x‖. Thus, x is a right singular vector of M(α̃)
and ‖M(α̃)x‖ = σn, the smallest singular value of M(α̃), which is easily computed
because M(α̃) is of small dimension. Moreover,

M(α̃)x = σnr, (3.8)

where r is the left singular vector of M(α̃) and ‖r‖ = 1.
Let α be the exact value and let the inexact α̃ = α+ η. Then we have the matrix

expansion

M(α+ η) = M(α) + ηM ′(α+ η̂) 'M(α) + ηM ′(α+ η),

where η̂ ∈ (0, η). We can easily compute M ′(α + η). Since M(α) is singular, we
know that the distance from M(α+ η) to M(α) in Frobenius norm is larger than the
smallest singular value of M(α+ η), that is,

σn ≤ ‖M(α+ η)−M(α)||F ' η‖M ′(α+ η)‖F .

So, we get a lower bound on η. Conversely, we see that as η → 0, we can get a bound
on σn → 0.

In conclusion, the coefficients become accurate at the same rate as alpha becomes
accurate. Also, we can determine an approximate lower bound on the accuracy of
alpha by computing the singular values of M(α̃). If the error in alpha is too big, we
do more computational work. (In [2, (5.12)], M(α) is scaled such that the dependence
on a is lumped into 2× 2 block diagonal terms Di that have no dependence on α, but
depend on the ratio ai/ai−1. In this paper, we use a slightly different scaling, where
Di = diag(ai−1,−ai).)

The calculations that are described in this section are not very costly, since typi-
cally, the number of interfaces adjoining a cross-point is very small, and the number
of eigenvalues of the Sturm-Liouville problem (3.3) in which we are interested is of
order O(1) (see [23]).
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4. Finite element discretization. For simplicity, we have assumed that do-
main Ω and its subdomains Ωj are polygonal, which allows the geometry of the discon-
tinuities of a to be resolved exactly using a triangular mesh. Let Th be a quasi-uniform
triangulation (see, for example, [8, Definition 4.4.13]) constructed so that no element
cuts across any interface (i.e., each element is contained in just one subdomain). Our
discretization method is based on the decomposition introduced in [2] that isolates the
singular functions from the piecewise H1 functions. To this end, let δm ∈ H1(Ω) de-
note any given“cut-off” function that has value one in a small area about cross-point
m and values that taper to 0 in a small outer “fring”, 1 ≤ m ≤M . (See Figure 4.2.)
Let sm,n be the nth singular basis function at cross-pointm, 1 ≤ n ≤ Nm, 1 ≤ m ≤M .
Then δmsm,n ∈ W provided that δm has support inside Ω and all interfaces inside
the fringe and platform of δm are straight lines. We will be more specific about sm,n

below. Defining the “split” space of piecewise H1 functions by

H1
S(Ω) :=

{
u ∈ (L2(Ω))2 : u|Ωj

∈ (H1(Ωj))2, j = 1, . . . , J
}
, (4.1)

and letting W1
S := W ∩H1

S(Ω), then our decomposition is given by

W = W1
S ⊕ span {δmsm,n : 1 ≤ m ≤M, 1 ≤ n ≤ Nm} , (4.2)

(c.f. [2], Theorem 5.1). At interior nodes of the subdomains Ωj , we use standard
piecewise linear nodal basis functions, whose coefficients at the nodal values are the
unknowns. (We will add certain quadratic basis functions shortly.) For vertices that
lie on interfaces, we use piecewise linear basis functions that satisfy interface conditions
(2.8) exactly and are scaled to have a maximum of one (see also Figure 4.1).

1

(a) (b)

interface

Fig. 4.1. A discontinuous linear basis function; in 3D view (a); in side view (b).

Singular components δmsm,n are discretized by choosing a discrete cut-off function
δm = δh

m and replacing sm,n by a discrete approximation s̃m,n, as described in section
3. Each cross-point m is surrounded by the support of its cut-off function, which
consists of a platform Pm and outer fringe Fh

m, consisting of one outer ring of level h
triangles. The platform also consists of level h triangles, but it is otherwise fixed in
size. The supports Pm ∪ Fh

m are constructed at each cross-point to be large enough
to obtain reasonable approximation to the singular functions, but small enough to
ensure that they do not intersect with each other. Cut-off function δh

m is then defined
so that δh

m|τ is linear for all τ ⊂ Fh
m and has value 1 inside its platform. See Figure

4.2.
Denoting by Fτ (·, ·) the F inner product evaluated on the element τ , we have

Fτ (δh
msm,n,v) = 0, for all τ ∈ Pm,
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Fig. 4.2. The cut-off function δh
m centered at a cross-point (Pm = platform, F h

m = fringe,
dotted lines are interfaces)

since δh
m = 1 inside Pm. This implies that for elements inside the platforms, entries

in element stiffness matrices that involve singular basis functions are zero. Only
elements in the fringes have element stiffness matrices that have contributions from
integration of singular basis functions. To evaluate these fringe integral terms, we use
two-dimensional Gaussian quadrature of order high enough to ensure that it does not
corrupt the discretization error estimates we obtain in the following sections. (Recall
that the siingular functions are smooth in the fringe,) Outside platforms and fringes
there are no contributions from singular basis functions. In conclusion, each singular
basis function need only be numerically integrated on the small number of elements
that comprise the fringe of its cut-off function.

To control the computational work of integrating the singular basis functions, we
have limited the fringes to width h, which reduces discretization accuracy. To avoid
this loss, we introduce quadratic “bubble-like” basis functions in the fringes, with
supports consisting of two triangles that share an edge within the fringe. Within each
triangle, it is defined to be the product of a linear function that is zero on one of the
non-shared edges and another that is zero on the other non-shared edge. When the
triangle pair is in a single Ωj , the basis function is scaled to be 1 at the midpoint of
the shared edge (see Figure 4.3 (c)). If, instead, the edge coincides with an interface,
the discontinuous basis function is such that it satisfies the interface conditions (2.8)
exactly and has a maximum of one. See Figure 4.3 (a) and (b) for a schematic.

In the next section, we derive an error estimate that illustrates the necessity for
such an increase in discretization order inside the fringes (see the proof of theorem
5.1).

Our discretization is, thus, defined by the space Wh of elements of the form

uh = uh
L + uh

Q +
M∑

m=1

Nm∑
n=1

ωm,nδ
h
ms̃m,n, (4.3)

where is uh
L is piecewise linear (with respect to T h) and continuous in Ωj , uh

Q is
piecewise quadratic and continuous in Ωj but with support contained in the fringe,
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1

(a)

(c)

(b)

interface

Fig. 4.3. A discontinuous quadratic basis function: in 3D view (a), in side view (b); and a
continuous quadratic basis functions (c)

and s̃m,n is an approximation to sm,n. The discrete problem corresponding to (2.7)
is then as follows: Find vh ∈Wh such that

F(uh,vh) =
〈
f/a,∇ · (

√
avh)

〉
0,Ω

, (4.4)

for all vh ∈Wh.
Both uh

L and uh
Q satisfy the interface conditions exactly, but the singular function

approximations s̃m,n do not, because α̃ is not exact. This means that the discrete
space is generally nonconforming: Wh 6⊂W. Thus, standard theory for discretization
accuracy does not apply, and we are left to develop our own estimates.

5. Error estimates. We begin by establishing an error estimate for the case of
a conforming subspace, where the singular basis functions are assumed to be known
exactly. To cover the practical case, where approximate singular basis functions are
used, we then derive a general error estimate for FOSLS L2 formulations with non-
conforming finite elements and apply it to the case of nonconforming singular basis
functions.

5.1. The conforming case: Wh ⊂ W. Let 2Hm be less than the smallest
distance from Pm to the nearest other platform or boundary. Let FH

m be a fringe of
width Hm and let δH

m be the associated cut-off function (see figure 5.1). Using the
decomposition of W given in (4.2), write the solution of variational problem (4.4) as

u = u0 +
M∑

m=1

N∑
n=1

ωm,nδ
H
msm,n, (5.1)

where u0 ∈W1
S . Now we state the error estimate for the conforming case.

Theorem 5.1. (Estimate for conforming Wh.) Assume that Wh ⊂ W. Let
u ∈ W denote the solution of variational problem (2.7) and uh ∈ Wh the solution
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of discrete variational problem (4.4). Let 2Hm be less than the distance between
Pm and the closest other platform or boundary and assume that 0 < h < Hm, for
m = 1, . . . ,M . Then∣∣u− uh

∣∣
W
≤ C1h

σ−1 |u0|σ,S + C2h sup
m,n
|ωm,n| , (5.2)

where σ ∈ (1, 2] depends on the smoothness of u0, ωm,n are the coefficients in (5.1)
and the constants C1, C2 > 0 are independent of h.

Proof. Since Wh ⊂W, then by (4.4), uh satisfies∣∣u− uh
∣∣
W

= inf
vh∈Wh

∣∣u− vh
∣∣
W
≤
∣∣u−wh

∣∣
W
, (5.3)

for any particular wh ∈Wh. As in (5.1), denote δH
m the cut-off function that is one

in Pm ∪ Fm and drops to zero linearly in the extended fringe FH
m around Pm ∪ Fh

m

of width Hm. See Figure 5.1 for a side view of this function. Note that all FH
m ,

Pm Fm

δH
m

1
z

x,yFH
m

δm

Fig. 5.1. Side view of cut-off functions δh
m and δH

m.

m = 1, . . . ,M , are mutually disjoint. Let Ih : C(Ω) → W denote a linear nodal
interpolant operator outside

⋃M
m=1 F

h
m and a quadratic nodal interpolant operator

in
⋃M

m=1 F
h
m. Coefficients of linear basis functions are obtained by function evalua-

tion at their vertex, whereas coefficients of quadratic basis functions are obtained by
evaluating the difference of function itself and the linear interpolant. We now write

u = u0 +
M∑

m=1

Nm∑
n=1

ωm,n(δH
m − δh

m)sm,n +
M∑

m=1

Nm∑
n=1

ωm,nδ
h
msm,n, (5.4)

where u0 ∈W1
S does not depend on h. Define

wh := Ih

(
u0 +

M∑
m=1

Nm∑
n=1

ωm,nψmsm,n

)
+

M∑
m=1

Nm∑
n=1

ωm,nδ
h
msm,n, (5.5)

where ψm := δH
m − δh

m. Substituting (5.4) and (5.5) into (5.3) and using the triangle
inequality, we obtain

∣∣u−wh
∣∣
W
≤
∣∣u0 − Ihu0

∣∣
W

+
M∑

m=1

Nm∑
n=1

|ωm,n|
∣∣ψmsm,n − Ihψmsm,n

∣∣
W
. (5.6)

Since u0 ∈ W1
S does not depend on h, we can use [19, theorem 4.4.20] to estimate

the first term in (5.6):∣∣u0 − Ihu0

∣∣
W

=
∣∣u0 − Ihu0

∣∣
1,S
≤ C̃1h

σ−1 |u0|σ,S . (5.7)
10



Here, 1 < σ ≤ 2 depends on the smoothness of u0.
Since ψmsm,n ∈W1

S , we have∣∣(I − Ih)ψmsm,n

∣∣2
W
≤
∑

τ∈F h
m

∣∣(I − Ih)ψmsm,n

∣∣2
1,τ

+
∑

τ∈F H
m \F h

m

∣∣(I − Ih)ψmsm,n

∣∣2
1,τ

.

Since the finite element space includes quadratics on Fh
m, the two terms on the right-

hand side satisfy∣∣(I − Ih)ψmsm,n

∣∣
1,τ
≤
{
ch2‖ψmsm,n‖3,τ , for τ ∈ Fh

m

ch‖ψmsm,n‖2,τ , for τ ∈ FH
m \Fh

m.

Using the inverse inequality and noting that ψ is linear, we have

‖ψmsm,n‖3,τ ≤
c

h
‖sm,n‖3,τ , for τ ∈ Fh

m,

and

‖ψmsm,n‖2,τ ≤
c

Hm
‖sm,n‖2,τ , for τ ∈ FH

m \Fh
m.

Putting this all together, we have∣∣(I − Ih)ψmsm,n

∣∣2
W
≤ ch2 ‖sm,n‖23,F h

m
+

c

Hm
h2 ‖sm,n‖22,F H

m
. (5.8)

Now, using (5.8) and (5.7) in (5.6), we obtain the estimate

∣∣u−wh
∣∣
W
≤ C̃1h

σ−1 |u0|σ,S + h
M∑

m=1

Cm

Nm∑
n=1

|ωm,n| ‖sm,n‖3,S,F H
m

(5.9)

≤ C1h
σ−1 |u0|σ,S + C2h sup

m,n
|ωm,n| . (5.10)

This completes the proof.
Remark 2. If the right-hand side of (2.2) is sufficiently smooth, then adding all

singular functions of the form (3.5) to the finite element space for which αn ∈ (0, 2]
yields a bound of O(h) in (5.2) (see [7]).

In practice, subspace Wh contains only approximate singular basis functions,
which implies Wh 6⊂ W. In the next section, we derive an error estimate for a
general nonconforming finite element space that is used in section 5.3.

5.2. A general error estimate for FOSLS L2 formulations with noncon-
forming finite elements. In this section, we depart from the framework and nota-
tion that was introduced in the previous section. We introduce a general methodology
for derivation of error estimates for FOSLS L2 formulations that use nonconforming
finite element spaces. First consider a general FOSLS L2 functional

G(u; f) := ‖Lu− f‖20,Ω , (5.11)

where Ω is a bounded open domain, u an element of a Hilbert space W , f ∈ (L2(Ω))k,
and L a first-order differential operator. This gives rise to the FOSLS L2 minimization
problem

u = arg min
v∈W

G(v; f), (5.12)

11



and its variational form: Find u ∈W , such that

F(u,v) = `(v), (5.13)

for all v ∈W , with

F(u,v) = 〈Lu,Lv〉0,Ω ,

`(v) = 〈f ,Lv〉0,Ω .

We assume that bilinear functional F is W-elliptic with respect to a norm ‖ · ‖W in
the sense that respective continuity and coercivity constants Ccont and Ccoer exist,
for which

F(u,v) ≤ Ccont ‖u‖W ‖v‖W ,

Ccoer ‖u‖2W ≤ F(u,u),

for all u,v ∈W .
Let {Ωj}j=1,...,J be an open partitioning of Ω, such that all Ωj are mutually

disjoint and
⋃J

j=1 Ωj = Ω. Let Wh be a finite element space for which the restriction
of the operator L to the subdomain Ωj is well defined. Define approximate bilinear
form Fnc by

Fnc(uh,vh) :=
J∑

j=1

〈
Luh,Lvh

〉
0,Ωj

(5.14)

and approximate linear functional `nc by

`nc(vh) :=
J∑

j=1

〈
f ,Lvh

〉
0,Ωj

, (5.15)

for uh,vh ∈Wh. Assume that Fnc is uniformly Wh-elliptic with respect to a norm
‖ · ‖Wh , with respective continuity and coercivity constants C̃cont and C̃coer. This
ensures that the following approximate variational problem has a unique solution:
Find uh ∈Wh such that

Fnc(uh,vh) = `nc(vh), (5.16)

for all vh ∈Wh.
Theorem 5.2. Consider a family of discrete problems that stem from a FOSLS

L2 minimization problem, whose associated approximate bilinear forms are uniformly
Wh-elliptic. Then there exists a constant C, independent of the subspace Wh, such
that ∥∥u− uh

∥∥
Wh ≤ C inf

vh∈Wh

∥∥u− vh
∥∥

Wh . (5.17)

Proof. Let vh ∈Wh be arbitrary. Using Wh-ellipticity of Fnc and the definition
of the approximate variational problem (5.16), we have

C̃coer

∥∥uh − vh
∥∥2

Wh ≤ Fnc(uh − vh,uh − vh)

= Fnc(u− vh,uh − vh) + Fnc(uh − u,uh − vh)

= Fnc(u− vh,uh − vh) + `nc(uh − vh)−Fnc(u,uh − vh).
(5.18)

12



Using (5.14), (5.15), and the Cauchy-Schwarz inequality for any wh ∈Wh, we have

∣∣`nc(wh)−Fnc(u,wh)
∣∣ ≤ J∑

j=1

∣∣∣〈f − Lu,Lwh
〉
0,Ωj

∣∣∣ ≤ J∑
j=1

‖f − Lu‖0,Ωj

∥∥Lwh
∥∥

0,Ωj
.

Since u ∈W is the solution of minimization problem (5.12), we deduce

‖Lu− f‖20,Ωj
≤ G(u; f) = 0

for all j = 1, . . . , J , which implies

`nc(wh)−Fnc(u,wh) = 0. (5.19)

Choosing wh = uh − vh in (5.18) and appealing to the continuity of Fnc, we thus
have

C̃coer

∥∥uh − vh
∥∥

Wh ≤ C̃cont

∥∥u− vh
∥∥

Wh . (5.20)

The triangle inequality and (5.20) imply∥∥u− uh
∥∥

Wh ≤
(
Ccont

Ccoer
+ 1
)∥∥u− vh

∥∥
Wh

which completes the proof.
Remark 3. Uniform Wh coercivity must be established before Theorem 5.2 can

be applied.
Theorem 5.2 implies that, for a FOSLS L2 formulation that is discretized using a

nonconforming finite element space, an estimate analogous to Cea’s Lemma (cf. [16,
Theorem 13.1]) holds. Inequality (5.17) does not involve a consistency error term,
as in the fundamental estimate for nonconforming finite elements (see [1], commonly
referred to as Strang’s second lemma). In common use is a patch test (cf. [16, page
221]), which determines whether this consistency error term approaches zero as h→ 0.
The corollary shows that, in the FOSLS L2 context, elements that do not satisfy such
conditions can be used, provided uniform Wh-ellipticity can be established for Fnc

and an error estimate based solely on interpolation theory can be derived.

5.3. An error estimate in the nonconforming space Wh * W. The finite
element space Wh contains singular functions that would ideally model the singular
behavior of the solution at cross-points exactly. However, the exponents and coeffi-
cients of these singular functions can be calculated only approximately, which means
generally that Wh * W.

We will use Theorem 5.2 to derive an error estimate for the nonconforming case.
However, as noted in Remark 3, we first must establish uniform coercivity of the
approximate bilinear form. Define the nonconforming functional by

Gnc(u; f) =
J∑

i=1

∥∥∥∥ 1√
a
(∇ ·
√
au + f)

∥∥∥∥2

0,Ωi

+
∥∥∥∥ 1√

a
∇× (u/

√
a)
∥∥∥∥2

0,Ωi

, (5.21)

the associated bilinear form

Fnc(u,v) =
K∑

i=1

〈
1/
√
a∇ ·

√
au, 1/

√
a∇ ·

√
av
〉2
Ωi

+
〈√

a∇× 1/
√
au,
√
a∇× 1/

√
av
〉2
Ωi
,

(5.22)
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and the semi-norm

Fnc(u,u) := |u|2Wh . (5.23)

We show in Appendix A.2 that Fnc is uniformly coercive in the norm ‖u‖2Wh :=
‖u‖20 + |u|2Wh . Thus, in what follows we use the seminorm. Now Theorem 5.2 implies
that

Fnc(u− uh,u− uh)1/2 =
∣∣u− uh

∣∣
Wh ≤ C inf

vh∈Wh

∣∣u− vh
∣∣
Wh . (5.24)

Denote by δh
ms̃m,n an approximation of the singular basis function δh

msm,n, such that
s̃m,n can be written in the general form (3.5) with approximate exponent α̃m,n and
approximate coefficient vectors λ̃m,n and µ̃m,n. The exact solution u ∈ W of the
FOSLS minimization problem (2.4) has the form

u = u0 +
M∑

m=1

Nm∑
n=1

ωm,nδ
h
msm,n +

M∑
m=1

Nm∑
n=1

ωm,n

(
δH
m − δh

m

)
sm,n, (5.25)

with u0 ∈W1
S independent of h. We choose

vh := Ihu0 +
M∑

m=1

Nm∑
n=1

ωm,nδ
h
ms̃m,n +

M∑
m=1

Nm∑
n=1

ωm,n

(
δH
M − δh

m

)
s̃m,n,

where Ih is the interpolant operator that was introduced in (5.5). Using (5.24), and
the triangle inequality, we have

∣∣u− uh
∣∣
Wh,Ωj

≤ C
∣∣u0 − vh

∣∣
Wh,Ωj

+
M∑

m=1

Nm∑
n=1

|ωm,n|
∣∣δh

m (sm,n − s̃m,n)
∣∣
Wh,Ωj

+
M∑

m=1

Nm∑
n=1

|ωm,n|
∣∣(δH

m − δh
m

)
(sm,n − s̃m,n)

∣∣
Wh,Ωj

,

(5.26)

for j = 1, . . . , J . Standard interpolation error estimates can be used to estimate |u0−
Ihu0|Wh,Ωj

analogous to the proof of Theorem 5.1. We now derive estimates for the
remaining terms, which involve the singular basis functions and their approximations.

Let Ωji
⊂ Ω, i = 1, . . . , Im, be the set of subdomains that meet at cross-point m,

ordered so that the appear consecutively with in increasing i. (See Figure 5.2.) Let
{ϑji}i=1,...,Im be the set of angles at cross-point m (see Figure 5.2 for an example).
If the difference of two subsequent angles is greater than π/2, then we introduce
artificial interfaces, equally spaced in the interval (ϑji

, ϑji+1), such that the angles
between subsequent interfaces are now smaller π/2. (See the dashed interface line
in figure 5.2.) The platform and fringe are such that, for subdomains that do not
require an artificial interface, Ωji ∩ (Pm ∪ Fm) is an isoscele triangle. In the presence
of artificial interfaces, platform and fringe are such that their intersection with Ωji is
the union of isoscele triangles whose sides are aligned with the artificial interfaces.

In the following calculations, we denote by Ĩm the total number of actual and
artificial interfaces, and by {θm,i}i=1,...,Ĩm

the angles of these interfaces, ordered such
that θm,i < θm,i+1, i = 1, . . . , Ĩm (define θm,Ĩm+1 = 2π + θm,1). Pm,i and Fm,i are

14



Ω10

Ω5

Ω2

Ω9

Ω4

fringe

Fig. 5.2. Geometry of interfaces meeting at a cross-point. Here, Im = 5, {ji} = {2, 9, 5, 10, 4}.

the parts of platform and fringe, respectively, that are enclosed by angles θm,i and
θm,i+1, i = 1, . . . , Ĩm. Denote by Rm,i the distance from Fm,i to the cross-point, and
by hm,i the radial width of Fm,i. We omit the subscript m,n for singular functions,
when it is obvious to which singular functions we refer.

The cut-off function on Fm,i, for θ ∈ (θm,i, θm,i+1), is

δh(r, θ) =
cos (θm,i+1/2 − θ)

h

(
Rm,i + hm,i

cos (θm,i+1/2 − θ)
− r
)
, (5.27)

where θm,i+1/2 = (θm,i+1 − θm,i)/2, with partial derivatives

δh
x(r, θ) = −

cos θm,i+1/2

h
, δh

y (r, θ) = −
sin θm,i+1/2

h
. (5.28)

In what follows, we assume the approximate singular basis functions, s̃m,n, are
of the form (3.5), with known but inexact coefficients α̃m,n = αm,n + ηm, λ̃m,n =
λm,n +O(ηm) and µ̃m,n = µm,n +O(ηm). We will drop subscripts where the meaning
is clear.

Lemma 5.3. Let ηm,n = |αm,n − α̃m,n|. The estimate∣∣δh
msm,n − δh

ms̃m,n

∣∣2
Wh ≤ C(a)η2

m,n/h (5.29)

holds for all cross-points and singular basis functions and some constant C(a) inde-
pendent of h and η.

Proof. Omitting the subscripts m,n for convenience, note that

Fnc
Pm

(δh
ms, δh

ms) = Fnc
Pm

(δh
ms̃, δh

ms) = Fnc
Pm

(δh
ms̃, δh

ms̃) = 0,

where Pm is the platform associated with singular function s. Letting s = (s1, s2)t

and s̃ = (s̃1, s̃2)t, (5.28) and some vector calculus implies∣∣δhs− δhs̃
∣∣
Wh,Fm,i

=
∥∥∇ · (δhs− δhs̃

)∥∥2

0,Fm,i
+
∥∥∇× (δhs− δhs̃

)∥∥2

0,Fm,i

=
∥∥∇δh · (s− s̃)

∥∥2

0,Fm,i
+
∥∥∇⊥δh · (s− s̃)

∥∥2

0,Fm,i

=
1

h2
m,i

(
‖s1 − s̃1‖20,Fm,i

+ ‖s2 − s̃2‖20,Fm,i

)
(5.30)
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We now estimate only the last term in (5.30), since a similar estimate can be derived
analogously for the other term. Let ηλ = λ− λ̃ and ηµ = µ− µ̃ and note that ηλ and
ηµ are of order O(η). Then, we get

‖s2 − s̃2‖20,Fm,i
= ai

∥∥αrα−1 (λ cos(α− 1)θ − µ sin(α− 1)θ)

−α̃rα̃−1(λ̃ cos(αh − 1)θ − µ̃ sin(α̃− 1)θ)
∥∥∥2

0,Fm,i

= ai

∥∥(αrα−1 − α̃rα̃−1)(λ cos(α− 1)θ − µ sin(α− 1)θ)

−α̃rα̃−1(ηλ cos(α̃− 1)θ − ηµ sin(α̃− 1)θ)
∥∥2

0,Fm,i
(5.31)

≤ 2ai

∥∥(αrα−1 − α̃rα̃−1)(λ cos(α− 1)θ − µ sin(α− 1)θ)
∥∥2

0,Fm,i

+ 2ai

∥∥α̃rα̃−1(ηλ cos(α̃− 1)θ − ηµ sin(α̃− 1)θ)
∥∥2

Fm,i

≤ 4ai(λ2 + µ2)
∥∥αrα−1 − α̃rα̃−1

∥∥2

Fm,i
+ 4ai(η2

λ + η2
µ)
∥∥α̃rα̃−1

∥∥2

Fm,i
.

Let 0 < r < R+ h, 0 < h < 1, and 0 < η < 1. Then we have

|1− rη| ≤ C1η,
∥∥α̃rα̃−1

∥∥2

0,Fm,i
≤ C2hm,i, (5.32)

which, with 0 < α, α̃ ≤ 1, implies that∥∥αrα−1 − α̃rα̃−1
∥∥2

0,Fm,i
≤
∥∥α(rα−1 − rα̃−1)− ηrα̃−1

∥∥2

0,Fm,i

≤ 2
∥∥rα−1 − rα̃−1

∥∥2

0,Fm,i
+ 2η2

∥∥rα̃−1
∥∥2

0,Fm,i

≤ 2
∥∥rα−1(1− rη)

∥∥2

0,Fm,i
+ 2η2C2hm,i (5.33)

≤ 2C2
1η

2C2hm,i + 2η2C2hm,i

= Cη2hm,i.

Combining estimates (5.31)-(5.33) with (5.30), we get∣∣δhs− δhs̃
∣∣
Wh,Fm,i

≤ C(ai)η2/hm,i (5.34)

Summing over interfaces and artificial interfaces, and noting that hm,i = O(h), com-
pletes the proof.

Using estimates (5.7) and (5.29) in (5.26) implies the main result of this section.
Theorem 5.4. Denote by u ∈W the solution of minimization problem (2.4) and

by uh ∈Wh the solution of the discretized variational problem (2.7). Also, let η > 0
be the maximum error in the exponent of the approximate singular basis function, let
h be the mesh size of triangulation T h and the fringe width, and

κ := min
s

{
α : α is the exponent of s, α > 1,∇ · (

√
as) = 0, and ∇× (s/

√
a) = 0

}
.

(5.35)
Then ∣∣u− uh

∣∣
Wh ≤ C(a)

(
hκ−1 + η/

√
h
)
, (5.36)

where the constant C(a) does not depend on η, κ, and h.
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with quadratics without quadratics
h G(uh; f) ratio G(uh; f) ratio

1/24 4.29(-2) 1.81 9.66(-2) 1.11
1/48 2.37(-2) 2.49 8.68(-2) 1.20
1/96 9.51(-3) 3.14 7.22(-2) 1.34
1/192 3.02(-3) 3.56 5.36(-2) 1.52
1/384 8.48(-4) 3.78 3.52(-2) 1.69
1/768 2.24(-4) 2.08(-2)

Table 5.1
Diameter of the fringe is fixed = 1/6 on all levels, Ω = (0, 1)2

To achieve a discretization error of order O(h) in the nonconforming finite element
space Wh, we must ensure that κ ≥ 2 and that the approximation error in the
exponent η is of order O(h3/2). The constraint on κ can be met by adding basis
functions of the general form (3.5) that have exponents 1 < α < 2, and satisfy the
first two equations in (2.2) with f = 0.

5.4. An Example. Here, we present a numerical example to illustrate the theo-
retical results of the previous sections. We consider problem (2.2) on the unit square,
with f = 0 and the Dirichlet boundary condition

τ · u = τ · s, on ∂(0, 1)2, (5.37)

where s is the singular function associated with the coefficient

a(x, y) =
{

1, for 0 < x, y < 1/2 and 1/2 < x, y < 1,
100, elsewhere in (0, 1)2. (5.38)

For this checkerboard pattern, the exponent is approximately α ≈ 0.126902069.
Table 5.1 shows the value of the FOSLS functional at the solution for various

values of h. The left two columns show results for the finite element space Wh

consisting of linear, quadratic, and singular elements as described in Section 4. The
right two columns show results for a finite element space that contains only the linear
and singular elements. The ratio refers to the quotient of two subsequent functional
values: ratio = G(uh; f)/G(uh/2; f). For the space Wh, this ratio approaches four as
h is decreased. In the space that does not contain quadratic elements in the fringe,
the ratio approaches two for decreasing h. These results signal a lower approximation
order when quadratic elements are not included in the finite element space.

6. A multilevel solver. We now describe a multilevel solver for the linear sys-
tem that arises from the finite element discretization using Wh. Our goal is to use
standard coarsening for linear elements and to include singular basis functions on ev-
ery level. This results in a hierarchy of spaces W2Kh * W2K−1h * . . . * W2h * Wh.
The spaces are nested except for the singular basis functions, which are non nested,
since the fringes on different levels have different widths.

We coarsen such that the platform associated with a given cross-point has equal
size on all levels. The choice of interpolation and restriction for linear and quadratic
elements in fringes is driven by the interpolation for singular basis functions.

Consider interpolation of δ2h
m s̃m,n ∈W2h to Wh. The coefficient ω2h

m,n of δ2h
m s̃m,n

is transfered by injection: ωh
m,n ← ω2h

m,n. What is left is the difference (δ2h
m − δh

m)s̃m,n

17



that is interpolated using standard linear and quadratic interpolation. Denote by Nh
L

and Nh
Q the respective numbers of linear and quadratic basis functions in Wh , and

by ψl, l = 1, . . . , Nh
L, and φk, k = 1, . . . , Nh

Q, the respective linear and quadratic basis
functions in Wh, such that

Wh = span
{
ψl : l = 1, . . . , Nh

L

}
∪ span

{
φk : k = 1, . . . , Nh

Q

}
∪ span

{
δh
ms̃m,n : m = 1, . . . ,M ; n = 1, . . . , Nm

}
. (6.1)

Define the vectors βh
m,n = {βh,l

m,n}l=1,...,Nh
L

and γh
m,n = {γh,k

m,n}k=1,...,Nh
Q

so that their
elements are the respective coefficients of linear and quadratic basis functions of the
pointwise linear and quadratic interpolant of (δ2h

m − δh
m)s̃m,n. We now have

Ih(δ2h
m − δh

m)s̃m,n :=
Nh

L∑
l=1

βh
l ψ

h,l
m,n +

Nh
Q∑

k=1

γh
kφ

h,k
m,n. (6.2)

Note that most of the βh,l
m,n and γh,k

m,n are zero, since δ2h
m − δh

m is nonzero only in the
fringe of level 2h associated with cross-point m.

Assume that the basis functions are ordered so that the first Nh
L are linear, the

next Nh
Q are quadratic, and the last NS :=

∑M
m=1Nm are singular basis functions.

Then the column in interpolation matrix Ih
2h corresponding to the singular basis

function with index (m,n) is (βh,1
m,n, . . . , β

h,Nh
L

m,n , γh,1
m,n, . . . , γ

h,Nh
Q

m,n , 0, . . . , 0, 1, 0, . . . , 0).
Fine-level linear basis functions centered at vertices inside the coarse-level fringe are
interpolated using standard linear interpolation.

level h fringe

level 2h fringe

Fig. 6.1. Location of quadratic points (level h: stars; level 2h: circles).

Figure 6.1 shows a section of the fringe in a triangular mesh of mesh size h (thick
and thin lines), and a section of the fringe in the coarsened triangular mesh of mesh
size 2h (thick lines). It illustrates the location of the quadratic nodes on both levels.
Note that quadratic nodes on level 2h coincide with vertices of triangles on level h.
We now describe the interpolation formulas that are used for quadratic nodes on level
h and linear nodes on level h that coincide with quadratic nodes on level 2h. For the
latter, we use linear interpolation from the two neighboring coarse points and add to
that the value of the quadratic at that point.

Figure 6.2 shows a coarse fringe unit triangle in general (ξ, η) coordinates that
is subdivided into four sub-triangles T1, . . . , T4. Triangles T2, T3, T4 are in the fine
fringe. Coarse-level quadratic basis functions are centered at points qc

1 and qc
2, and

fine-level quadratic basis functions are centered at points qf
1 , . . . , q

f
4 . (We denote by

qc
1, q

c
2, q

f
1 , . . . , q

f
4 the respective points, as well as the coefficients of quadratic basis
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q1 q2 q3 q4

p1 p2

T2

T3

T4

T1

Fig. 6.2. Coarse fringe triangle subdivided into four sub triangles.

functions at these points.) Assume that the linear part of the coarse-level function is
zero. The quadratic part is

Q(ξ, η) = qc
1Q

c
1(ξ, η) + qc

2Q
c
2(ξ, η),

with

Qc
1(ξ, η) = 4η(1− ξ − η),

Qc
2(ξ, η) = 4ξη.

First we interpolate the linear fine-level points that coincide with quadratic coarse-
level points. We obtain the following linear functions:

L2(ξ, η) = 2ηqc
1, in T2,

L3(ξ, η) = 2η(2(qc
1 − qc

2)ξ − qc
1), in T3,

L4(ξ, η) = 2ηqc
2, in T4.

We want the interpolant to be pointwise exact at fine-level quadratic points, so inter-
polation of fine-level quadratic points is determined by

qf
1 = Q(0, 1/4)− L2(0, 1/4) = 1/4 qc

1,

qf
2 = Q(1/4, 1/4)− L2(1/4, 1/4) = 1/4 qc

2,

qf
3 = Q(1/2, 1/4)− L4(1/2, 1/4) = 1/4 qc

1,

qf
4 = Q(3/4, 1/4)− L4(3/4, 1/4) = 1/4 qc

2.

(6.3)

Interpolation weights in (6.3) do not depend on ξ or η, so they are the same in in
(x, y) coordinates.

Denote by Îh
2h ∈ <(NL+NQ)×(NL+NQ) the matrix that interpolates linear and

quadratic basis functions on level h from level 2h, as defined above. Let Bh :=
{βh

m,n}n=1,...,Nm;m=1,...,M and Γh := {γh
m,n}n=1,...,Nm;m=1,...,M . Then we can write

the interpolant operator Ih
2h : W2h →Wh in matrix as form

Ih
2h =

 Îh
2h

Bh

Γh

0 0 I

 , (6.4)

where I is the identity matrix in <NS×NS .
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We extend this idea to all levels to obtain interpolation matrices I2K−1h
2Kh , . . . , Ih

2h.
The restriction operators are defined as the transpose of interpolation I2k+1h

2kh =
(I2kh

2k+1h)t, for k = 0, . . . ,K − 1. The coarse-grid stiffness matrix is determined from
the Galerkin principle by fine-grid stiffness matrix Sh and interpolation matrix Ih

2h:

S2h = (Ih
2h)t Sh Ih

2h. (6.5)

This definition is extended recursively to all levels.
We use Gauss-Seidel relaxation for pre- and post-relaxation in the multigrid it-

eration and solve the coarse grid problem approximately using algebraic multigrid
(AMG) (see [29]). Numerical tests have shown that the standard AMG algorithm is
not well suited to solve the resulting linear system. Therefore, we instead use a Schur
complement approach that exploits the structure of the coarse-grid problem, with the
sub-problems treated by AMG.

To explain this Schur-AMG approach, note that the coarse-grid linear system has
the general form (

A V
V t D

)(
u
w

)
=
(

f
g

)
(6.6)

where submatrix A represents connections between linear and quadratic basis func-
tions and D represents connections between singular basis functions. A is sparse and
D is block diagonal. The off-diagonal submatrix V represents connections between the
linear and quadratic basis functions and the singular basis functions. Linear system
(6.6) can be reduced to

u = A−1f −A−1Vw (6.7)
w = (D − V tA−1V )−1(g − V tA−1f). (6.8)

We calculate A−1f and A−1V approximately using AMG. The inverse of D−V tA−1V
is then calculated directly, using Gaussian elimination, since the number of singular
basis functions is assumed to be small.

Denote by NC the number of coarse-grid linear and quadratic basis functions and
by NS the number of singular basis functions. Thus, A ∈ <NC×NC , V ∈ <NC×NS , and
D ∈ <NS×NS . AMG has complexity of order O(NC), and the inverse of D−V tA−1V
can be calculated in O(N3

S) operations. Hence, the complexity of the coarse-grid
solver is of order O(N3

S + NSNC). Since NS is assumed to be small in comparison
to NC , we can deduce that standard multilevel complexity analysis applies (see, for
example, [31]).

7. Numerical results. To study the convergence properties of the multigrid
algorithm described above let the domain Ω be a square partitioned in a checkerboard
fashion into square subdomains of equal size, where the coefficient a is constant. In
our examples, a takes on two values that are distributed over the square subdomains
in a checkerboard fashion. We report asymptotic convergence factors of the functional
value (G(uh; f))1/2 that were obtained by setting f = 0 and imposing homogeneous
Dirichlet boundary conditions n×

√
auh = 0, on ∂Ω. Thus, the exact solution of the

problem is uh = 0, which allows us to perform many iterations without encountering
serious machine representation effects. To properly test convergence, we initialize all
variables randomly.

Table 7.1 shows asymptotic convergence factors for the W (2, 2) cycle for two
examples of a. Four checkerboard patterns are investigated, ranging from one singular
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basis function to 16. Each column shows asymptotic convergence factors for fixed
mesh-size h. Hence, the domain Ω changes for varying numbers of singular basis
functions. However, the width of fringes does not change.

a(x, y) ∈ {1, 100} a(x, y) ∈ {1, 10000}
levels = 3 4 5 6 3 4 5 6
1× 1 .20 .15 .13 .13 .27 .23 .13 .13
2× 2 .28 .23 .13 .13 .37 .35 .24 .13
3× 3 .33 .29 .18 .13 .40 .42 .32 .17
4× 4 .38 .36 .25 .13 .45 .48 .39 .23

Table 7.1
Influence of the coefficient a(x, y) (W(2,2) cycle)

We observe that, for a larger number of levels, typical multigrid convergence
factors that are h-independent are attained. For a smaller number of levels, the con-
vergence factors appear to grow with the number of singular basis functions. However,
this dependency appears to weaken as more levels are added; it appears to be stronger
for larger jumps in the coefficient a.

In Table 7.2, the influence of the number of pre- and post-relaxation steps in the
W -cycle is shown. We display effective convergence factors relative to the W (1, 1)
cycle. Since for integer k > 1 one W (k, k) cycle is k times more costly than one
W (1, 1) cycle, we have ρW (k,k),effective = ρ

1/k
W (k,k). Increasing the number of pre- and

post-relaxation steps increases effective convergence factors. It is, hence, most efficient
to use W (1, 1) cycles.

W(1,1) W(2,2) W(4,4)
levels = 3 4 5 6 3 4 5 6 3 4 5 6
1× 1 .30 .24 .27 .27 .45 .39 .36 .36 .64 .59 .49 .49
2× 2 .39 .34 .26 .26 .53 .48 .36 .36 .71 .68 .58 .49
3× 3 .44 .36 .30 .26 .57 .54 .42 .36 .74 .72 .63 .49
4× 4 .48 .47 .37 .26 .62 .60 .50 .36 .75 .72 .63 .49

Table 7.2
Effective convergence factors; Influence of the number of relaxations (a(x, y) ∈ [1, 100])

Table 7.3 shows results for two convergence tolerances for the AMG iteration that
is used to invert A approximately. For the larger tolerance of 1e − 1 convergence of
the multilevel iteration is somewhat slower than for the smaller tolerance of 1e − 9.
This difference is less pronounced when more levels are added.

AMG tolerance = 1e− 9 1e− 1
geometry\levels = 3 4 5 6 3 4 5 6

1× 1 .20 .15 .13 .13 .22 .15 .13 .13
2× 2 .28 .23 .13 .13 .42 .31 .17 .13
3× 3 .33 .29 .18 .13 .51 .40 .24 .13
4× 4 .38 .36 .25 .13 .59 .51 .35 .17

Table 7.3
Influence of the coarse grid solver on the overall convergence (W(2,2) cycles, a(x, y) ∈ {1, 100})
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8. Conclusions. We introduced a finite element method for FOSLS L2 formu-
lation of the diffusion equation with discontinuous coefficients. Our approach uses
singular basis functions to yield accurate approximation of the flux variable close to
singular points in the domain at minimal additional computational cost. Stress inten-
sity factors are also calculated. We developed a special discretization error analysis,
since standard theory is not applicable. This led to a general error estimate for FOSLS
L2 discretizations with nonconforming finite elements. We also proposed a multilevel
algorithm for the solution of the resulting linear system that uses non-standard coarse
spaces including coarse representations of singular basis functions. The performance
of the algorithm is illustrated by numerical examples.

Appendix A. Uniform coercivity of Fnc. The purpose of this appendix is to
establish the uniform coercivity of Fnc. In [2] such a bound was established for the
conforming functional. Here, we show that the coercivity constant will be independent
of h and η, the error in the exponents of the singular basis function, only if η goes to
zero at least as fast as the cosine of the angle between the mesh dependent singular
function δh

msη
m,n and the subspace, W1

S , of piecewise H1 functions. Unfortunately, a
proof that the angle between the singular basis functions and W1

S in O(h) has not
been found. In this next section we provide numerical proof.

1 − cos θ

1.2e-016.2e-023.1e-021.6e-027.8e-033.9e-032.0e-03

1.6e-02

3.9e-03

9.8e-04

2.4e-04

6.1e-05

1.5e-05

3.8e-06

Fig. A.1. log2-log2 plot of 1−cos θ (see (A.1)), where h is on the x-axis. θ is the angle between
a singular basis function and the rest of the space.

A.1. Angle between δh
msm,n and W 1

S . In the example, we present in Figure
A.1, the domain Ω is divided into subdomains in a 2 × 2 checkerboard fashion, with
a = 1 in the upper left and lower right subdomains, and a = 100 in the upper right
and lower left subdomains. This configuration results in a singularity in the center of
the domain with exponent α ≈ 0.126902. Figure A.1 depicts 1− cos θ as a function of
h, where θ is the angle between the singular basis function and the rest of the space,

cos θ =
Fnc(δhsh, Ih(δhsh))

Fnc(δhsh, δhsh)1/2Fnc(Ih(δhsh), Ih(δhsh))1/2
, (A.1)

and Ih is the standard pointwise linear interpolation operator.
Both axes in the figure are on a log2 scale. All data points lie on a straight line,

so we conjecture 1− cos θ = O(h2), and, hence, θ = O(h).

A.2. Uniform Coercivity. We assume that the discrete subspace space consists
of the conforming linears and quadratics, with proper jumps across the interfaces,
plus a finite number of singular basis functions. Here, as in section 5, we make the
assumption that the approximate singular basis functions, s̃m,n are of the form (3.5)
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with known but inexact coefficients α̃m,n = αm,n + ηm,n, λ̃m,n = λm,n +O(ηm,n) and
µ̃m,n = µm,n +O(ηm,n). We will drop subscripts where the meaning is clear.

We further assume that etam,n is sufficiently small to resolve the differences be-
tween exponents at a give singular point xm. That is, we assume that ηm,n ≤ ηm,0

for n = 1, . . . , Nm.
To emphasize the dependence on η, we denote the discrete subspace as

Wh,η := W1,h
S + span

{
δh
ms̃m,n

}Nm,M

n=1,m=1
. (A.2)

Next we define a bound on the angle between the subspace spanned by the ap-
proximate singular basis functions a a given singular point xm and the subspace W1

S .
Let

Sm(η, h) := span{δh
ms̃m,n}Nm

n=1 (A.3)

and let

γm(h) := sup
η≤ηm,0

sup
s∈Sm,u∈W1

S

Fnc 〈s, u〉
|s|Wh |u|Wh

. (A.4)

This yields the following result.
Lemma A.1. (Strengthened Cauchy-Schwarz inequality). For every singular point

xm there is a constant γm(h) < 1.0 such that

Fnc(s, w) ≤ γm|s|Wh |w|Wh (A.5)

for every s ∈ Sm and w ∈W1
S.

Proof. For any fixed h > 0, η > 0, there is a positive angle between Sm and W1
S .

Thus, γm < 1.0
This leads to the following bound.
Lemma A.2. Let w ∈Wh,η have the form

w =
M∑

m=1

Nm∑
n=1

βm,nδ
ms̃m,n + wh

0 (A.6)

where wh
0 ∈W1,h

S . Then

M∑
m=1

Nm∑
n=1

β2
m,n|δh

ms̃m,n|2Wh ≤
C

1− γ2
|w|2Wh (A.7)

where γ = maxm γm.
Proof. The result follows from the fact that the singular basis functions associated

with different singular points are mutually orthogonal and from the strengthened
Cauchy-Schwarz inequality. For this proof only, let Pm represent the platform and
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fringe around singular point m.

|w|2Wh ≥ |
M∑
i=1

N−m∑
n=1

βm,nδ
h
ms̃m,n|2Wh − 2F

〈
M∑
i=1

Nm∑
n=1

βm,nδ
h
ms̃m,n, w0

〉
+ |w0|2Wh

≥
M∑
i=1

∣∣∣∣∣
Nm∑
n=1

βm,nδ
h
ms̃m,n

∣∣∣∣∣
2

Wh

−2
M∑
i=1

γm

∣∣∣∣∣
Nm∑
n=1

βm,nδ
h
ms̃m,n

∣∣∣∣∣
Wh

|w0|Wh,Pm
+ |w0|2Wh

≥ (1− γ2)
M∑
i=1

∣∣∣∣∣
Nm∑
n=1

βm,nδ
h
ms̃m,n

∣∣∣∣∣
2

Wh

+ |w0|2Wh −
M∑

m=1

|w0|2Wh,Pm

≥ (1− γ2)
M∑
i=1

∣∣∣∣∣
Nm∑
n=1

βm,nδ
h
ms̃m,n

∣∣∣∣∣
2

Wh

Since the singular functions associated with any give singular point are linearly inde-
pendent, there exists a constant Cm independent of h such that∣∣∣∣∣

Nm∑
n=1

βm,nδ
h
ms̃m,n

∣∣∣∣∣
Wh

≥ Cm

Nm∑
n=1

|βm,n|2
∥∥δh

ms̃m,n

∥∥2

Wh (A.8)

This completes the proof.
We now show a Poincaré-Friedrichs inequality for the bilinear form. The noncon-

formity is rooted in the fact that the singular basis functions, δh
ms̃m,n, do not satisfy

the jump conditions exactly. Suppose Γij is the interface between ΩI and ΩJ . Let
[g]Γij denote the jump in g across Γij . Let w ∈ Wh,η be defined as in (A.6). We
have

[
n ·
√
aw
]
Γij

=

[
n ·
√
a

M∑
m=1

Nm∑
n=1

βm,nδ
h
ms̃m,n

]
Γij

=
∑

m : Γij∩Pk 6=∅

Nm∑
n=1

βm,n

[
n ·
√
aδh

ms̃m,n

]
Γij

[
τ · 1√

a
w
]
Γij

=

[
τ · 1√

a

M∑
m=1

Nm∑
n=1

βm,nδ
h
ms̃m,n

]
Γij

=
∑

m : Γij∩Pk 6=∅

Nm∑
n=1

βm,n

[
τ · 1√

a
δh
ms̃m,n

]
Γij

Theorem A.3. Let γ be defined as in Lemma A.2. Let η bound there maximum
error in α̃m,n, λ̃m,n and µ̃m,n. Then, there exists constants C1 and C2, independent
of h, η such that

‖u‖0,Ω ≤ C
η2

1− γ2
|u|Wh , (A.9)

for all w ∈Wh,η.
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Proof. Consider a Helmholtz decomposition on Wh: for u ∈ Wh, there exist
p, ψ ∈ H1(Ω) such that

u =
√
a∇p+

1√
a
∇⊥ψ, (A.10)

where p is unique the solution of the weak equation

〈a∇p, ∇q〉 = 〈
√
au, ∇q〉

p = q = 0, on ΓD,
n · a∇p = 0, on ΓN ,

(A.11)

and ψ is the unique (up to a constant) solution of〈
1
a∇

⊥ψ, ∇⊥φ
〉

=
〈

1√
a
u, ∇⊥φ

〉
ψ = Ci, φ = 0 on ΓNi ,
n · 1

a∇ψ = 0, on ΓD,

(A.12)

where Ci are arbitrary constants, one of which may be set to zero.
Note that the decomposition is orthogonal in the L2 sense:〈√

a∇p, 1√
a
∇⊥ψ

〉
0,Ω

= 0. (A.13)

We thus have

‖u‖20,Ω =
∥∥√a∇p∥∥2

0,Ω
+
∥∥∥∥ 1√

a
∇⊥ψ

∥∥∥∥2

0,Ω

. (A.14)

This next step uses the fact that the jump conditions across boundaries are satisfied
exactly except for the singular basis functions, which have support only on Pm, for
m = 1, . . . ,M .

We assume that a is a constant on Pm ∩ Ωi and that Γij ∩ Pk is a straight line
starting from the singular point, xm. We have

∥∥√a∇p∥∥2

0,Ω
=
〈√

a∇p,
√
a∇p

〉
0,Ω

=
J∑

i=1

〈a∇p, ∇p〉0,Ωi

=
J∑

i=1

〈
−∇ ·

√
au, p

〉
0,Ωi

+
∮

∂Ωi

(
n ·
√
au
)
p

=
J∑

i=1

〈
− 1√

a
∇ ·
√
au,
√
ap

〉
0,Ωi

+
∑
ij

∫
Γij

[
n ·
√
au
]
p

≤
J∑

i=1

∥∥∥∥ 1√
a
∇ ·
√
au
∥∥∥∥

0,Ωi

∥∥√ap∥∥
0,Ωi

+

∣∣∣∣∣∣
∑
ij

∑
m:Γij∩Pm 6=∅

∫
Γij∩Pm

Nm∑
n=1

βm,n

[
n ·
√
aδh

ms̃m,n

]
p

∣∣∣∣∣∣ .
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With our assumptions, we have

∫
Γij∩Pm

Nm∑
n=1

βm,n

[
n ·
√
aδh

ms̃m,n

]
p

≤ Cmη

Nm∑
n=1

|βm,n|

∣∣∣∣∣
∫ Rm

0

δh
m(r)r(α̃n−1)p(r)dr

∣∣∣∣∣
≤ Cmη

Nm∑
n=1

|βm,n|
(∥∥√aip

∥∥
1/2,Γij∩Pk

+
∥∥√ajp

∥∥
1/2,Γij∩Pm

)
,

where Rm is the radius of Pm. Here Cm involves minΩ |a|.
Plugging this into the expression above first using the ε-inequality twice, us-

ing a trace inequality ‖
√
ap‖1/2,∂(Ωi∩Pk) ≤ C‖

√
a∇p‖0,Ωi∩Pk

, the fact that ‖ 1√
a
∇ ·

√
aδh

k s̃η
k‖0,Pk

≤ C, where C is independent of h and η, and the Poincaré-Friedrichs
inequality on p in [2, Lemma 3.1], we get

∥∥√a∇p∥∥2

0,Ω

≤
J∑

i=1

∥∥∥∥ 1√
a
∇ ·
√
au
∥∥∥∥

0,Ωi

∥∥√ap∥∥
0,Ωi

+
∑
ij

∑
m:Γij∩Pm 6=∅

Cmη

Nm∑
n=1

|βM,n|
(∥∥√aip

∥∥
1/2,Γij∩Pm

+
∥∥√ajp

∥∥
1/2,Γij∩Pm

)

≤ 1
ε1

J∑
i=1

∥∥∥∥ 1√
a
∇ ·
√
au
∥∥∥∥2

0,Ωi

+ ε1
∥∥√ap∥∥2

0,Ωi
+

1
ε2

∑
m

C2
mη

2
Nm∑
n=1

|βm,n|2

+2ε2
∑
ij

∑
m:Γij∩Pm 6=∅

(∥∥√aip
∥∥2

1/2,Γij∩Pm
+
∥∥√ajp

∥∥2

1/2,Γij∩Pm

)

≤ 1
ε1

J∑
i=1

∥∥∥∥ 1√
a
∇ ·
√
au
∥∥∥∥2

0,Ωi

+ ε1c4
∥∥√a∇p∥∥2

0,Ωi

+
Cη2

ε2

J∑
i=1

∑
k:Ωi∩Pk 6=∅

Nm∑
n=1

|βm,n|2
∥∥∥∥ 1√

a
∇ ·
√
aδh

ms̃m,n

∥∥∥∥2

0,Ωi∩Pm

+ 2C1ε2
∥∥√a∇p∥∥2

0,Ωi

Choosing appropriate ε1 and ε2 yields

∥∥√a∇p∥∥2

0,Ω
≤ C

(
J∑

i=1

∥∥∥∥ 1√
a
∇ ·
√
au
∥∥∥∥2

0,Ωi

+ η2
∑

i

∑
m:Ωi∩Pm 6=∅

Nm∑
n=1

|βm,n|2
∥∥∥∥ 1√

a
∇ ·
√
aδh

ms̃m,n

∥∥∥∥2

0,Ωi∩Pm

 . (A.15)
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A similar result follows for the other term in the decomposition,

∥∥∥∥ 1√
a
∇⊥ψ

∥∥∥∥2

0,Ω

≤ C

(
J∑

i=1

∥∥∥∥√a∇× 1√
a
u
∥∥∥∥2

0,Ωi

+ η2
∑

i

∑
m:Ωi∩Pm 6=∅

Nm∑
n=1

|βm,n|2
∥∥∥∥√a∇× 1√

a
δh
ms̃m,n

∥∥∥∥2

0,Ωi∩Pm

 . (A.16)

Putting (A.15) and (A.16) together and applying Lemma A.2 yields

‖u‖20,Ω =
∥∥√a∇p∥∥2

0,Ω
+
∥∥∥∥ 1√

a
∇⊥ψ

∥∥∥∥2

0,Ω

(A.17)

≤ C|u|2Wh + Cη2
∑
m

Nm∑
n=1

|βm,n|2|δh
ms̃m,n|2Wh

≤
(
C1 +

C2η
2

(1− γ2)

)
|u|2Wh

This completes the proof.
Corollary A.4. Under the assumption γ = 1 − O(h2), there are constant C1

and C2, independent of h, such that

‖u‖20,Ω ≤
(
C1 + C2

η2

h2

)
|u|Wh . (A.18)

Proof. The proof follows immediately from Theorem A.3.
To eliminate h dependence, we must ensure that η = O(h). Recall that η is the

error in the exponent of the singular basis function. In our numerical scheme for the
calculation of the exponents, we have full control over their accuracy.
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